Learning Dynamics of Pesticide Abuse through Data Mining
نویسندگان
چکیده
Recent studies by agriculture researchers in Pakistan have shown that attempts of crop yield maximization through pro-pesticide state policies have led to a dangerously high pesticide usage. These studies have reported a negative correlation between pesticide usage and crop yield in Pakistan. Hence excessive use (or abuse) of pesticides is harming the farmers with adverse financial, environmental and social impacts. In this work we have shown that how data mining integrated agricultural data including pest scouting, pesticide usage and meteorological recordings is useful for optimization (and reduction) of pesticide usage. The data used in this work has never been utilized in this manner ever before. We have performed unsupervised clustering of this data through Recursive Noise Removal (RNR) heuristic of Abdullah and Brobst (2003). These clusters reveal interesting patterns of farmer practices along with pesticide usage dynamics and hence help identify the reasons for this pesticide abuse.
منابع مشابه
Intelligent identification of vehicle’s dynamics based on local model network
This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...
متن کاملImproving Fraud and Abuse Detection in General Physician Claims: A Data Mining Study
Background We aimed to identify the indicators of healthcare fraud and abuse in general physicians’ drug prescription claims, and to identify a subset of general physicians that were more likely to have committed fraud and abuse. Methods We applied data mining approach to a major health insurance organization dataset of private sector general physicians’ prescription claims. It involved 5 ste...
متن کاملConcept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملارائه مدلی برای استخراج اطلاعات از مستندات متنی، مبتنی بر متنکاوی در حوزه یادگیری الکترونیکی
As computer networks become the backbones of science and economy, enormous quantities documents become available. So, for extracting useful information from textual data, text mining techniques have been used. Text Mining has become an important research area that discoveries unknown information, facts or new hypotheses by automatically extracting information from different written documents. T...
متن کاملPrediction of Student Learning Styles using Data Mining Techniques
This paper focuses on the prediction of student learning styles using data mining techniques within their institutions. This prediction was aimed at finding out how different learning styles are achieved within learning environments which are specifically influenced by already existing factors. These learning styles, have been affected by different factors that are mainly engraved and found wit...
متن کامل